Loading Events

Mr. Michael Twardowski, Research Engineer at Delsys & Altec Inc., will defend his PhD Dissertation on

Deriving Motor Unit-based Control Signals for Multi-Degree-of-Freedom Neural Interfaces
Beginning with the introduction of electrically powered prostheses more than 65 years ago surface electromyographic (sEMG) signals recorded from residual muscles in amputated limbs have served as the primary source of upper-limb myoelectric prosthetic control. The majority of these devices use one or more neural interfaces to translate the sEMG signal amplitude into voltage control signals that drive the mechanical components of a prosthesis. In so doing, users are able to directly control the speed and direction of prosthetic actuation by varying the level of muscle activation and the associated sEMG signal amplitude. Consequently, in spite of decades of development, myoelectric prostheses are prone to highly variable functional control, leading to a relatively high-incidence of prosthetic abandonment among 23-35% of upper-limb amputees. Efforts to improve prosthetic control in recent years have led to the development and commercialization of neural interfaces that employ pattern recognition of sEMG signals recorded from multiple locations on a residual limb to map different intended movements. But while these advanced algorithms have made strident gains, there still exists substantial need for further improvement to increase the reliability of pattern recognition control solutions amongst the variability of muscle co-activation intensities.

In efforts to enrich the control signals that form the basis for myoelectric control, I have been developing advanced algorithms as part of a next generation neural interface research and development, referred to as Motor Unit Drive (MU Drive), that is able to non-invasively extract the firings of individual motor units (MUs) from sEMG signals in real-time and translate the firings into smooth biomechanically informed control signals. These measurements of motor unit firing rates and recruitment naturally provide high-levels of motor control information from the peripheral nervous system for intact limbs and therefore hold the greater promise for restoring function for amputees. The goal for my doctoral work was to develop advanced algorithms for the MU Drive neural interface system, that leverage MU features to provide intuitive control of multiple degrees-of-freedom. To achieve this goal, I targeted 3 research aims: 1) Derive real-time MU-based control signals from motor unit firings, 2) Evaluate feasibility of motor unit action potential (MUAP) based discrimination of muscle intent 3) Design and evaluate MUAP-based motion Classification of motions of the arm and hand.

Committee Members
Professor Zhi Li (Advisor), WPI
Professor Michael Gennert, WPI
Professor Karen Troy, WPI
Dr. Joshua Kline (VP of Research and Development, Delsys Inc.)


Mr. Michael Twardowski

Research Engineer
Altec, Inc.
USA


Michael D. Twardowski received his B.S. in Biomedical Engineering from the University of Rhode, Kingston, RI, in 2016, and his M.S. degree in Robotics Engineering from Worcester Polytechnic Institute, Worcester, MA, USA, in 2018, where he trained in the fields of biomechanics, robotic control, signal processing, and algorithm development. He joined Delsys, Inc/Altec, Inc. in 2016, where he currently holds the position of Research Engineer.

At Delsys, he collaborates with a team of developers, engineers and research scientists to design next generation neural interface technology for extracting neural information from biological signals and translating that information into control signals for use with rehabilitative devices, assistive robotics, and prostheses.

Online Profiles
Altec
Google Scholar
WPI

Title

Go to Top